0%

introduction

简单的常微分方程求解问题通式,我们的问题是从这个方程组入手,得到y关于x的函数关系,但是解析解一般难以求解,因此从数值解求法入手 \[ \begin{cases} \frac{dy}{dx} = f(x, y) &x \in [a, b]\\ y(a) = y_0 \end{cases} \] \(Lipschitz条件: |f(x, y_1) - f(x, y_2)| \leq L|y_1 - y_0|, x \in [a, b]\) 当方程组中二元函数关系f满足该条件时,常微分方程有解

Lipschitz条件可以理解为:在任意x属于[a. b]的闭区间中,f(x. y)的任意一条纵向曲线都是导数有界

阅读全文 »

代数系统

代数系统主要由两部分组成:1. 元素组成的集合 2. 作用在集合上的二元运算

以下知识梳理将围绕这两个部分进行

flowchart LR
ques1["判断给定集合和运算是否构成代数系统(封闭性判断)"]
ques2["判断二元运算性质"]
ques3["求二元运算性质"]
atten["两种运算的表达形式1.解析式 2.运算表"]
ques2 --> atten
ques3 --> atten
ques4["子代数判定"]
ques5["计算积代数"]
ques6["判读、证明函数是某一类同态"]
title["本章主要题型"] --> ques1
title --> ques2
title --> ques3
title --> ques4
title --> ques5
title --> ques6
阅读全文 »